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Abstract
The generalization of the Yang–Baxter equations in the presence of Z2 grading
along both chain and time directions is presented and an integrable model of
t–J type with staggered disposition of shifts of the spectral parameter along the
chain is constructed. The Hamiltonian of the model is computed in the fermionic
formulation. It involves three neighbour site interactions and therefore can be
considered as a zigzag ladder model. The algebraic Bethe ansatz technique is
applied and the eigenstates as well as the eigenvalues of the transfer matrix of
the model are found. It is argued that in the thermodynamic limit the lowest
energy of the model is formed by the quarter filling of the states by fermions
instead of the usual half filling.

PACS numbers: 75.10.-b, 05.20.-y, 74.20.-z

1. Introduction

Interest in ladder-type models first arose at the beginning of the 1990s (see [1] for a review) in
connection with high-temperature superconductivity problems in metal oxides. It is believed
that quasi-one-dimensional multi-ladder chains of strongly interacting electrons reflect the
most important aspects of two-dimensional systems and can also reveal some properties of the
weak coupling between conducting planes.

Recently there has been considerable interest in the construction of integrable ladder-
type models motivated by the desire to use the powerful algebraic Bethe ansatz (ABA)
technique [2, 3] in the exact investigations of the variety of physical phases of the models.
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In [5] integrable ladder models were constructed by extension of the symmetry algebra, and
in [6] by first defining the ground state and then formulating a model which has it. The higher
conservation laws of integrable models, which contain next-to-nearest-neighbour interactions,
were used in the construction of ladder models in [7], developing the approach of [8].Models
with alternating spins were considered in [9,10]. There have also been some other attempts in
this area [11, 12].

Usually, integrable models are homogeneous along the chain: namely, the spectral u and
model parameters are the same in the product of R-matrices along the chain. It is obvious that,
if one considers arbitrary shifts of the spectral parameters by some zi in the monodromy matrix,
we still have an integrable model. But in order to have a local Hamiltonian we need to consider
shifts with fixed periodicity n, which causes the interaction of spins (or electrons) within an
amount of n neighbours, leading to an n-ladder model. The staggered shift of the spectral
parameter was first considered in [13] in an attempt to construct a relativistic invariant massive
Tirring model in a specific limit of the homogeneousXXZ model. The inhomogeneous models
were considered in [16–18].

In [4] we proposed an inhomogeneous model based on the XXZ spin chain, where
the inhomogeneity appeared not only in the staggered shifts of the spectral parameter by
some additional parameter θ , but also in change of structure of R-matrices in the product
along the chain. Namely, two monodromy matrices of chains Ms , s = 0, 1 were considered
along the time direction, where the R-matrices in the product have an alternating disposition
of the anisotropy parameter ±� of the XXZ model. In addition, and contrary to the
case considered in [15–19], the spectral parameter of the second line has an opposite
sign. Due to the double space translational invariance the Hamiltonian of the model
contains interaction between three neighbours sites of the chain and therefore represents
a zigzag-type ladder model. At the free fermionic point � = 0 the model becomes a
model of two noninteracting fermions, hopping separately in the odd and even sites of the
chain.

In this paper we extend the construction of [4] to the ordinary t–J model [27–30],
which, as was shown in [22], is the fermionized version of the spin-1 Uimin–Lai–Sutherland
model [24–26]. Following [4], we consider two different expressions for monodromy matrices,
which act on the states of the chain consecutively in time direction, and write two Yang–
Baxter equations (YBEs) (see (2.14) and (2.15) below) for each step of alternating R-
matrices along the chain. But as the solution shows, in this spin space isotropic model
we have less modification of R-matrices of the chain than in the anisotropic XXZ model,
being left only with the alternating shift of the spectral parameter and the change of sign
of the spectral parameter in the second line. As we will see, though this gives us the same
Bethe equations (BEs) for the spectral parameters of the excitations as for the model derived
in [16–18], their energy and the energy of the ground state are different. It is argued that
in the thermodynamic limit the lowest energy of the model is reached by the quarter filling
of the states by fermions, instead of the usual half filling. The model contains an additional
parameter θ .

In section 2 we formulate the model and find a local Hamiltonian, which has a zigzag ladder
form. It consists of two chains with t–J -type Hamiltonians on each of them, the hopping term
of electrons from one chain to the other and two types of interaction terms between chains. The
first interaction term has the form of spin–spin interaction, where one spin is composed from
two fermions on the same site of the chain, while the other spin is composed from two different
fermions on the neighbour sites of the other chain of the ladder. The second interaction term has
a topological form of interacting spins and is written for the triangles consisting of the zigzag
rungs. As in the ordinary t–J model the present model also has global gl(1|2) supersymmetry.
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In section 3 we apply ABA in order to find the eigenvalues and the eigenstates of the
model. At the end of section we find the ground state energy of the model and the spectrum
of excitations in thermodynamic limit.

2. The Yang–Baxter equations and their solution

The key of integrability of the models is the YBE, which implies some restrictions on theRij (u)

matrix, the basic constituent of the monodromy matrix. The YBE ensures a local sufficient
condition for the commutativity of the transfer matrices τ(u) = tr T (u) at different values of
the spectral parameter u, which corresponds to the rapidity of pseudo-particles of the model

[τ (u) , τ (v)] = 0. (2.1)

We use the fermionization technique (as an alternative to Jordan–Wigner transformation)
developed in [21–23] (see also [20]) and work with the R-operators (rather than matrices)
expressed in Fermi fields ci , c+

i , (i = 1, . . . , N is the chain site).
By definition Raj acts as a intertwining operator on the space of direct product of the

so-called auxiliary Va (v) and quantum Vj (u) spaces

Raj (u, v) : Va(u) ⊗ Vj (v) → Vj (v) ⊗ Va(u). (2.2)

The spaces Va(u) and Vj (v) with spectral parameters u and v are irreducible representations
of the affine quantum algebra Uq(ĝ), which is the symmetry algebra of the integrable model
under consideration. Provided that the states |a〉 ∈ Va and |j〉 ∈ Vj form a basis for the spaces
Va and Vj , following [21] we can represent the action of the operator Raj as

Raj |j1〉 ⊗ |a1〉 = (
Raj

)a2j2

a1j1
|a2〉 ⊗ |j2〉 (2.3)

where the summation is over the repeated indices a2 and j2 (but not over a1 and j1).
By introducing the Hubbard operators

Xa1
a2

= |a2〉〈a1| X
j1
j2

= |j2〉〈j1| (2.4)

in the graded spaces Va and Vj correspondingly, one can rewrite (2.3) as

Raj = Raj |j1〉|a1〉〈a1|〈j1| = (
Raj

)a2j2

a1j1
|a2〉|j2〉〈a1|〈j1|

= (−1)p(a1)p(j2)
(
Raj

)a2j2

a1j1
Xa1
a2
X

j1
j2

(2.5)

where the sign factor takes into account the possible gradings of the states |ai〉 and |ji〉, and
p(ai) and p(ji) denote the corresponding parities and summation over the repeated indices.

In terms of operators Rij the matrix-valued YBE can be written in the following operator
form:

Rab(u, v)Raj (u,w)Rbj (v,w) = Rbj (v,w)Raj (u,w)Rab(u, v). (2.6)

Let us now consider Z2 graded quantumVj,ρ(v) and auxiliaryVa,σ (u) spaces, ρ, σ = 0, 1.
In this case we have 4 × 4 R-matrices, which act on the direct product of the spaces Va,σ (u)
and Vj,ρ(v), (σ, ρ = 0, 1), mapping them on the intertwined direct product of Va,σ̄ (u) and
Vj,ρ̄(v) with the complementary σ̄ = (1 − σ), ρ̄ = (1 − ρ) indices

Raj,σρ (u, v) : Va,σ (u) ⊗ Vj,ρ(v) → Vj,ρ̄(v) ⊗ Va,σ̄ (u). (2.7)

It is convenient to introduce two transmutation operations ι1 and ι2 with the property
ι21 = ι22 = id for the quantum and auxiliary spaces correspondingly, and to mark the operators
Raj,σρ as follows:

Raj,00 ≡ Raj Raj,01 ≡ R
ι1
aj

Raj,10 ≡ R
ι2
aj Raj,11 ≡ R

ι1ι2
aj .

(2.8)
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The introduction of the Z2 grading in quantum space means that we now have two
monodromy matrices Mρ, ρ = 0, 1, which act on the space Vρ = ∏N

j=1 Vj,ρ by mapping

it on Vρ̄ = ∏N
j=1 Vj,ρ̄

Mρ : Vρ → Vρ̄ ρ = 0, 1. (2.9)

It is now clear that the monodromy matrix of the model, which should define the partition
function, is the product of two monodromy matrices

M(u) = M0(u)M1(u). (2.10)

Now, because of the grading in the auxiliary space, we would like to construct the
monodromy matrices M0,1 as a staggered product of the Raj and R̄

ι2
aj matrices. Let us define

M0(u) =
N∏
j=1

Ra,2j−1(u)R̄
ι2
a,2j (u)

M1(u) =
N∏
j=1

R̄
ι1
a,2j−1(u)R

ι1ι2
a,2j (u)

(2.11)

where the notation R̄ in general means the different parametrization of the R-matrix via model
(λ) and spectral (u) parameters and can be considered as an operation over R with property
¯̄R = R.

In order to have an integrable model with commuting transfer matrices (2.1) for different
spectral parameters

[trM(u), trM(v)] = 0 (2.12)

it is enough to have the following relations for the τσ (u) = trMσ(u), (σ = 0, 1):

τσ (λ, u) τ1−σ (λ, v) = τ̄σ (λ, v) τ̄1−σ (λ, u) σ = 0, 1. (2.13)

It is not hard to see that, in order to ensure the commutativity condition (2.12), the R-
and R̄-matrices in (2.11) should fulfil the following two YBEs, which in the so-called check
formalism defined by operator Řij = RijPij (Pij is the permutation operator) have the form

Ř12(u, v)
ˇ̄R
ι1

23(u)Ř12(v) = Ř
ι1
23(v)

ˇ̄R12(u)
ˇ̃
R23(u, v) (2.14)

ˇ̃
R12(u, v)Ř

ι1ι2
23 (u) ˇ̄R

ι2

12(v) = ˇ̄R
ι1ι2

23 (v)Ř
ι2
12(u)Ř23(u, v). (2.15)

It is also convenient to use the fermionic (graded) operator formalism for R-matrices and
the YBEs developed in [20–23].

We are going to extend the construction described above to the t–J model [27–29]. As
was shown in [22], the R-operator of the t–J model can be obtained from the spin-1 model
of [24–26] by fermionization (an alternative approach to the Jordan–Wigner transformation)
of their spin-1 R-matrix. A minimum of two sorts of fermions is needed in order to express
three basic states |+〉, |0〉, |−〉 of the spin-1 particle with the z component of the spin equal to
1, 0, −1 correspondingly.

Now let us define cσ +, cσ , where σ =↑↓, as creation–annihilation operators of fermions
with the up and down spins respectively, together with their Fock space |0〉,|σ 〉.

The states with definite third projection of the algebra SU(2) can be realized through
fermionic Fock space as follows:

|−〉 ≡ |0,↓〉, |+〉 ≡ | ↑, 0〉, |0〉 ≡ |0, 0〉 (2.16)

numerated as |1〉, |2〉, |3〉 respectively.
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As is obvious from (2.16), we have constructed a graded space with the following parities
for the basic vectors:

p(|+〉) = p(|−〉) = 1 p(|0〉) = 0. (2.17)

In order to proceed further and write the fermionic R-matrix we should calculate the
Hubbard operator Xn

m = |m〉〈n|;m, n = 1, 2, 3

Xk
m =


 |−〉〈−| |−〉〈+| |−〉〈0|

|+〉〈−| |+〉〈+| |+〉〈0|
|0〉〈−| |0〉〈+| |0〉〈0|


 =


 (1 − n↑)n↓ c+

↓c↑ (1 − n↑)c+
↓

c+
↑c↓ n↑(1 − n↓) c+

↑(1 − n↓)
(1 − n↑)c↓ c↑(1 − n↓) (1 − n↑)(1 − n↓)


 .

(2.18)

The trace of this operator is

� = Xm
m = 1 − n↑n↓ (2.19)

which is an identity operator on the space of states, where the double occupancy of the sites
by fermions is excluded.

Following [22] let us write down the fermionic R-operator for the t–J (spin 1 [24–26])
model:

Ři,j (u) = a(u)Ii,j + b(u)*i,j = a(u)Ii,j + b(u)

N∑
m,n=1

(−1)p(m)Xi
m
n Xj

n
m

(2.20)

where *i,j is the graded permutation operator of the spaces Vi and VJ .
Now by putting the R-matrix form (2.20) into the YBEs (2.14) and (2.15) and after some

calculations one can find 12 equations which require the operations ˜and transformation ι1 to
be

ã(u, v) = a(u, v) b̃(u, v) = b(u, v)

aι1(u)

bι1(u)
= a(u)

b(u)
.

(2.21)

Conditions (2.21) reduce the 12 equations to the following two equations:

a(u, v)[ā(u)b(v) − b̄(u)a(v)] + b(u, v)ā(u)a(v) = 0
a(u, v)[aι2(u)b̄ι2(v) − bι2(u)āι2(v)] + b(u, v)aι2(u)āι2(v) = 0

(2.22)

the consistency condition of which can be found easily as follows:

b(v)

a(v)
− b̄ι2(v)

āι2(v)
= b̄(u)

ā(u)
− bι2(u)

aι2(u)
= constant = θ. (2.23)

Here θ is the new parameter of our model.
Then the solution of (2.22) for the intertwiner parameters a(u, v) and b(u, v) is

b(u, v)

a(u, v)
= b̄(u)

ā(u)
− b(v)

a(v)
. (2.24)

We should now define the ι2 operation. It is easy to see from (2.23) for v = u that the ι2
operation can be consistently defined as follows:

bι2(u)

aι2(u)
= −b(u)

a(u)

b̄ι2u

āι2(u)
= − b̄(u)

ā(u)
. (2.25)

It is clear from (2.22)–(2.24) that the ratio b(u)

a(u)
can be taken as a spectral parameter

b(u)

a(u)
= u, b̄(u)

ā(u)
= ū = θ − u.
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Finally, after appropriate normalization of a(u) and b(u) in order to have a(u)+b(u) = 1,
one finds the following solution of YBEs:

a(u) = 1

1 + u
ā(u) = a(ū)

1

1 + θ − u
a(u, v) = a(v − u) = 1

1 + v − u

b(u) = u

1 + u
b̄(u) = b(ū) = θ − u

1 + θ − u
b(u, v) = b(v − u) = v − u

1 + v − u
.

(2.26)

According to the standard prescription of the ABA technique the logarithmic derivative
of the transfer matrix at some point defines the Hamiltonian of the model

H = −∂ln τ(u)

∂u

∣∣∣∣
u=0

. (2.27)

As is known, in order for the Hamiltonian to be local, it is necessary to have a value u0

such that

Ři,j (u0) = Ii,j . (2.28)

Analysing the solutions of our YBEs (2.26), one can see from (2.20) that, at the point u0 = 0,

only Ři,j (0) = Ii,j and ˇ̄Ri,j (0) �= Ii,j . As calculations show, the Hamiltonian is nevertheless
local, but it contains interaction between four neighbour points.

Technically, in order to calculate the logarithmic derivative (2.27), one should put the
expression of Ři,j operators around u0 = 0 up to linear terms

Ři,j = Ii,j + uHi,j

ˇ̄Ri,j (u) = Ri,j (θ) − uHi,j

ˇRi,j

ι2
(u) = Ii,j − uHi,j

ˇ̄R
ι2

i,j (u) = Ri,j (−θ) + uHi,j

(2.29)

with

Hi,j =
∑
m,n

(−1)p(m)Xi
m
n Xj

n
m

(2.30)

into the expression (2.10) of the monodromy matrix

M(u) = M0(u)M1(u) = . . . R̄
ι2
01(u)R12(u)R̄

ι2
23R34(u) . . . R

ι1ι2
12 (u)R̄

ι1
23(u)R

ι1ι2
34 (u)R̄

ι1
45 . . . .(2.31)

As a result, after some algebraic calculations, we obtain the following Hamiltonian for
the present staggered t–J model:

H = θ�

N∑
i=1

{ ∑
σ=↑↓

(
2 − ni−1

2
− ni−2

2

)
(c+

i,σ ci+1,σ − c+
i+1,σ ci,σ )

+
∑
σ=↑↓

[(
1 − ni+1

2
+ (−1)iθ

)
c+
i+2,σ ci,σ −

(
1 − ni+1

2
− (−1)iθ

)
c+
i,σ ci+2,σ

]

+2

[
(�Si+2 + �Si−1)(�Si,i+1 − �Si+1,i ) + �Si+1(�Si+2,i − �Si,i+2)

+θ(−1)i
(

�Si−1 �Si+1 − 1

4
ni−1ni+1 +

ni−1 + ni+1

2

)

−iεabcSai S
b
i+1S

c
i+2

]}
� (2.32)

where� = ∏N
i=1 �i = ∏N

i=1(1−ni↑ni↓) is the projector which excludes the double occupancy
by electrons at any site i.
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The spin operators �Si and �Si,j are defined as follows:

�Si = 1
2.

+
i,β �σβ

α .
α
i = 1

2�ic
+
i,α �σα

β c
β

i �i

�Si,j = 1
2.

+
i,β �σβ

α .
α
j = 1

2�ic
+
i,α �σα

β c
β

j �j

(2.33)

where

.1 = (1 − n↑)c↓ .2 = c↑(1 − n↓) (2.34)

and �σ are Pauli matrices.

3. Algebraic Bethe ansatz for the staggered t–J model

In this section we apply the technique of ABA [3, 28, 29] to the present model and find the
eigenvalues and eigenstates of the Hamiltonian (2.32).

For this purpose let us introduce the L operators as follows:

(Li,j )
k′
k = 〈k|Ri,j |k′〉 (3.1)

which is a matrix in the horizontal auxiliary space and an operator in the quantum space. In
matrix form it looks like

Li,j =

 a(u) − b(u)(1 − n↑)n↓ −b(u)c↑c+

↓ b(u)(1 − n↑)c+
↓

−b(u)c+
↑c↓ a(u) − b(u)n↑(1 − n↓) b(u)c+

↑(1 − n↓)
b(u)(1 − n↑)c↓ b(u)c↑(1 − n↓) a(u) + b(u)(1 − n↑)(1 − n↓)


 .

(3.2)

The monodromy matrixMk
k′(u), which is defined by the matrix elements of the monodromy

operators (2.10), (2.11) in the auxiliary space can be expressed as a product of Li,j matrices
as follows:

M0(u)
k
k′ = 〈k|M0(u)|k′〉 = (−1)p(k)p(k

′)(L̄
ι2
01)

k
k1
(L02)

k1
k2
. . . (L0N)

kN−1
k′

M1(u)
k
k′ = 〈k|M1(u)|k′〉 = (−1)p(k)p(k

′)(L
ι1ι2
01 )

k
k1
(L̄

ι1
02)

k1
k2
. . . (L̄

ι1
0N)

kN−1
k′ .

(3.3)

Following the notation of [29], one can write

Ms(u)
k
k′ =

(
As,11(u) As,12(u) Bs,1(u)

As,12(u) As,22(u) Bs,2(u)

Cs,1(u) Cs,2(u) Ds(u)

)
s = 0, 1 (3.4)

where As,ab, Bs,a , Cs,a , Ds ; (a, b = 1, 2) act on the quantum space.
Then, as a super-trace of the monodromy matrix (3.4) the transfer matrix τ(u) has the

form

τs(u) = −As,11(u) − As,22(u) + Ds(u) s = 0, 1. (3.5)

The matrix elements of the monodromy matrix obey the algebraic relations

(−1)p(k
′′)(p(m′)+p(m′′))Řkm

k′m′(u, v)M
m′
1,m′′(u)M

k′
0,k′′(v)

= (−1)p(k
′)(p(m)+p(m′))Mm

1,m′(v)M
k
0,k′(u)Ř

k′m′
k′′m′′(u, v)

(−1)p(k
′′)(p(m′)+p(m′′))Řkm

k′m′(u, v)M
m′
0,m′′(u)M

k′
1,k′′(v)

= (−1)p(k
′)(p(m)+p(m′))Mm

0,m′(v)M
k
1,k′(u)Ř

k′m′
k′′m′′(u, v)

(3.6)

which are the consequence of YBEs (2.14), (2.15). In getting (3.6) we have used the
properties (2.21).

Consider now the empty fermionic state as a test ‘vacuum’

|6〉s = |0, 0, . . . , 0〉s = |0〉1s |0〉2s . . . |0〉Ns s = 0, 1 (3.7)
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and let us check that |6〉 is indeed an eigenstate of transfer matrix (3.5):

τs(u)|6〉s = ν(0)s |6〉1−s . (3.8)

From (3.3), τs(u) is a product of Li,j matrices. Hence, in order to check (3.8) we should
first calculate L0k|0〉s,k . It appears that

L̄
ι1
0k|0〉s,k =


 b̄(u)ι1 0 b̄ι1(u)c+

k↓
0 b̄ι1(u) b̄ι1(u)c+

k↑
0 0 āι1(u) + b̄ι1(u)


 |0〉k s = 0, 1. (3.9)

We see that L0k|0〉k is an upper-triangular matrix. Therefore the action of the product of
L0k in (3.3) on vacuum |6〉k as a matrix also has an upper-triangular form

M1(u)
k
k′ |6〉1 =


 [bι2ι1(u)b̄ι1(u)]

N
2 0 B1,1(u)

0 [bι2ι1(u)b̄ι1(u)]
N
2 B1,2(u)

0 0 1


 |6〉1

M0(u)
k
k′ |6〉0 =


 [b̄ι2(u)b(u)]

N
2 0 B0,1(u)

0 [b̄ι2(u)b(u)]
N
2 B0,2(u)

0 0 1


 |6〉0

(3.10)

where we have used that a(u) + b(u) = 1.
We see that the Bs,1(u) and Bs,2(u), (s = 0, 1) operators create one-particle states while

Cs,1(u), Cs,2(u) operators annihilate them:

Cs,a(u)|6〉s = 0 s = 0, 1 a = 1, 2. (3.11)

We see from (3.10) that

ν(0)s (u) = 1 − 2[bι2(u)b̄(u)]
N
2 (3.12)

where bι2(u) and b̄(u) are defined by (2.26) and N is the length of the chain.
This observation leads us to the following ansatz for the eigenstates of τ(v):

|v1, v2, . . . , vn|F 〉0 = Fan...a1B0,a1(v1)B1,a2(v2) . . . B0,an (vn)|6〉0 ai = 1, 2 (3.13)

is an n particle state. The Fan...a1 is a function of spectral parameters vj to be specified later.
The action of the transfer matrix (3.5) on the states (3.13) is determined by the relations

(3.10) and the intertwining properties of the As,ab(u), Ds(u), Bs,a(u) operators are defined
from the YBE (3.6). The components of the intertwining relations, which we need for the
construction of the ABA are

D1(u)B0,a(v) = 1

b(u, v)
B1,a(v)D0(u) − a(v, u)

b(v, u)
B1,a(u)D0(v)

A1,ba(u)B0,c(v) = rb
′c′

bc (u, v)

b(u, v)
B1,c′(v)A0,b′a(u) +

a(u, v)

b(u, v)
B1,b(u)A0,ca(v)

B1,a(u)B0,b(v) = rb
′a′

ab (u, v)B1,a′(v)B0,b′(u)

(3.14)

where

rb
′c′

bc (v) = −a(v)δc
′
b δ

b′
c + b(v)δb

′
b δ

c′
c = −a(v)I c

′b′
bc − b(v)*

(1)b′c′
bc . (3.15)

Here *
(1),b′c′
bc is a graded permutation operator for p(1) = p(2) = 1, one can check that it

fulfils the following YBE:

r(λ−µ)a2c2
a3c3

r(λ)
a1b1
c2d2

r(µ)d2b2
a2c2

= r(µ)a1c1
a2c2

r(λ)
c2d2
a3b3

r(λ−µ)
c1b1
d2b2

. (3.16)
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Now by use of (3.14), we can obtain that the diagonal elements of the monodromy matrix act
on the states (3.13) as follows:

D1(u)

∣∣∣∣v1, . . . , vn|F 〉1 =
n∏

j=1

1

b(vj , u)

∣∣∣∣v1, . . . , vn|F 〉0

+
n∑

k=1

(=̃k)
b1...bn

a1...an
B1,bk (u)F

an...a1

n∏
j=1,j �=k

Bbj (vj )|6〉0[
A1,11(u) + A1,22(u)

] | v1, . . . , vn|F 〉1

= −
n∏

i=1

1

b(u, vi)
[bι1ι2(u)b̄ι2(u)]

N
2 τ

(1)a′
1...a

′
n

a1...an (u)F an...a1

n∏
i=1

Ba′
i
(vi)|6〉0

+
n∑

k=1

(=k)
b1...bn
a1...an

F an...a1B1,bk (u)

n∏
i=1,j �=k

Bbj (vj )|6〉0

(3.17)

where

τ
(1)a′

1...a
′
n

a1...an (u) = −r
b1a

′
1

ca1 (u, v1) . . . r
ca′

n

bn−1an
(u, vn)

= str[ln(u, vn)ln−1(u, vn−1) . . . l1(u, v1)] (3.18)

and

[lk(u, vk)]
bk
bk−1

= r
bka

′
k

bk−1ak
(u, vk). (3.19)

As follows from (3.19), lk is a 2 × 2 matrix, the elements of which are the operators

lk(u) =
(
l1k,1 l2k,1
l1k,2 l2k,2

)
=
(
b(u)I − a(u)e1

1 −a(u)e2
1

−a(u)e1
2 b(u)I − a(u)e2

2

)
(3.20)

where eba are quantum operators in the nth space with matrix representation (eba)
α
β = δαa δ

b
β .

It is obvious that the eigenvalue condition

(Ds,1(u) − As,11(u) − As,22(u))|v1, . . . , vn|F 〉s = νs(u, v1, . . . , vn)|v1, . . . , vn|F 〉1−s (3.21)

is fulfilled if:
(i) we impose the cancellation of unwanted terms in (3.17)

[(=̃k)
b1...bn
a1...an

− (=k)
b1...bn
a1...an

]Fan...a1 = 0 (3.22)

called BE, and
(ii) we solve the eigenvalue problem for the small transfer matrix (3.18)

τ
(1)a′

1...a
′
n

a1...an (u; v1, . . . , vn)F
a1...an = ν(1)(u; v1, . . . , vn)F

a′
1...a

′
n (3.23)

and then we have the following expression for eigenvalues:

ν1(u; v1, . . . , vn) =
n∏

i=1

1

b(vi, u)
+ [bι1ι2(u)b̄ι1(u)]

N
2

n∏
j=1

1

b(u, vj )
ν(1)(u, vi)

ν0(u; v1, . . . , vn) =
n∏

i=1

1

b(vi, ū)
+ [bι1(ū)b̄ι1(ū)]

N
2

n∏
j=1

1

b(ū, vj )
ν(1)(ū, vi).

(3.24)

For the solution of the second equation (ii) we should make the ABA for a small
auxiliary problem of a chain, with length n (number of particles) and ‘nested’ transfer

matrix τ
(1)a′

1...a
′
n

a1...an (u; v1, . . . , vn). This is why this procedure is called nested algebraic Bethe
ansatz (NABA). In [29] it was demonstrated how to calculate =b1...bn

a1...an
and =̃b1...bn

a1...an
and to reduce

the condition of cancellation of the unwanted terms for the ordinary t–J model to some
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equation. It is not necessary to repeat the same calculation here since it differs very little from
the one carried out, the only difference being in the term

(A1,11 + A1,22)|6〉 = [bι1ι2(u)b̄ι1(u)]
N
2 |6〉. (3.25)

Therefore we obtain the following conditions:

τ
(1)b′

1...b
′
n

b1...bn
(vk|v1, . . . , vn)F

bn...b1 = [bι1ι2(vk)b̄
ι1(vk)]

− N
2

n∏
i=1,i �=k

b(vkvi)

b(vivk)
F b′

n...b
′
1 (3.26)

as the BE.
In the next step of the NABA we want to find the eigenvalues and eigenstates of τ (1)(u).

It is clear from (3.16) that we have another small integrable model with the R-matrix ra
′b′

ab (u)

defined by (3.15) and the corresponding transfer matrix τ (1)(u).

Therefore, we should apply a non-ordinary ABA to this problem. The YBE for the problem
is

ra
′b′

ab (u, v)M̂
(1)a′′
a′ (u)M̂

(1)b′′
b′ (v) = M̂

(1)b′
b (v)M̂(1)a′

a (u)ra
′′b′′

a′b′ (u, v) (3.27)

where M(1)a′
a is the corresponding (nested) monodromy matrix.

Now if we define

M(1)(u) =
(
A(1)(u) B(1)(u)

C(1)(u) D(1)(u)

)
τ (1)(u) = −A(1)(u) − D(1)(u) (3.28)

then by use of (3.15) and YBE (3.27) we find

D(1)(u)B(1)(v) = 1

b(u, v)
B(1)(v)D(1)(u) +

a(v, u)

b(v, u)
B(1)(u)D(1)(v)

A(1)(u)B(1)(v) = a(u, v)

b(u, v)
B(1)(u)A(1)(v) +

1

b(v, u)
B(1)(v)A(1)(u)

B(1)(u)B(1)(v) = B(1)(v)B(1)(u).

(3.29)

Let us take as reference state

|0〉(1)k =
(

1
0

)

|6〉(1) = |0〉(1)1 . . . |0〉(1)n =
n⊗

k=1

|0〉(1)k .

(3.30)

The action of the nested monodromy matrix M(1)(u) on the reference state |6〉(1) is
described by the action lk(u) on |0〉(1)k , which we can find from (3.20). So we obtain

A(1)(u)|6〉(1) =
n∏

i=1

[b(u, vi) − a(u, vi)]|6〉(1) =
n∏

i=1

b(u, vi)

b(vi, u)
|6〉(1)

D(1)(u)|6〉(1) =
n∏

i=1

b(u, vj )|6〉(1).
(3.31)

For the eigenstates of τ (1)(v), we have the following ansatz:

|v(1)1 , . . . , v(1)m 〉 = B(1)(v
(1)
1 )B(1)(v

(1)
2 ) . . . B(1)(v(1)m )|6〉(1). (3.32)
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The action of τ (1)(u) on the states (3.32) is the same as the action of the diagonal elements
of (3.28) on those states. By use of (3.14) we obtain

D(1)(u)|v(1)1 , . . . , v(1)m 〉 =
n∏

j=1

b(u, vj )|v(1)1 , . . . , v(1)m 〉 +
m∑
k=1

=
(1)
k B(1)(u)

m∏
i=1,i �=k

B(1)(vi)|6〉(1)

A(1)(u)|v(1)1 , . . . , v(1)m 〉 =
m∏
i=1

1

b(v
(1)
i , u)

n∏
j=1

b(u, vj )

b(vj , u)
|v(1)1 , . . . , v(1)m 〉 (3.33)

+
m∑
k=1

=̃
(1)
k B(1)(u)

∏
j=1,j �=k

B(1)(vj )|6〉(1).

From (3.33) we can easily write the eigenvalues of τ (1)(u):

τ (1)|v(1)1 , . . . , v(1)m 〉 = −
[ m∏

i=1

1

b(v
(1)
i , u)

n∏
j=1

b(u, vj )

b(vj , u)

+
m∏
i=1

1

b(u, v
(1)
j )

n∏
j=1

b(u, vj )

]
|v(1)1 , . . . , v(1)m 〉. (3.34)

One can get simply the first set of BE by comparing (3.34) with (3.26). Inputting u = vk
in (3.26) we obtain

[bι2(vk)b̄(vk)]
N
2 =

m∏
i=1

b(v
(1)
i , vk) k = 1, 2, . . . , n. (3.35)

The second set of BE, which are the conditions of cancellation of the unwanted terms =(1)
k

and =̃
(1)
k are similar to the corresponding equations of the standard XXX model and can be

found easily as
n∏

j=1

b(vj , v
(1)
k ) =

∏
i �=k

b(v
(1)
k , v

(1)
i )

b(v
(1)
i , v

(1)
k )

k = 1, 2, . . . , m. (3.36)

This is exactly the same equation as found in [29].
Finally, we find

ν1(u, {vi}) =
n∏

i=1

1

b(vi, u)
− [bι2(u)b̄(u)]

N
2

n∏
j=1

1

b(u, vj )

[ m∏
i=1

1

b(v
(1)
i , u)

n∏
j=1

b(u, vj )

b(vj , u)

+
m∏
i=1

1

b(u, v
(1)
i )

n∏
j=1

b(u, vj )

]

ν0(u, {vi}) =
n∏

i=1

1

b(vi, ū)
− [b̄ι2(u)b(u)]

N
2

n∏
j=1

1

b(ū, vj )

[ m∏
i=1

1

b(v
(1)
i , ū)

n∏
j=1

b(ū, vj )

b(vj , ū)

+
m∏
i=1

1

b(ū, v
(1)
i )

n∏
j=1

b(ū, vj )

]
(3.37)

as the n-particle state eigenvalues of transfer matrices τ1(u) and τ0(u) respectively.
But the transfer matrix of our staggered model is the product of τ0(u) and τ1(u), therefore

the eigenvalues ν(u, {vi}) of τ(u) are

ν(u, {vi}) = ν0(u, {vi})ν1(u, {vi}) (3.38)

with the BEs (3.35) and (3.36) unchanged.



5898 J Ambjorn et al

Let us now calculate the energy of excitations over the test ‘vacuum’ |6〉, called bare
energy, which is dressed in a real ground state due to interactions with particles in a filled
Dirac sea. The bare energy is a logarithmic derivative of eigenvalues (3.37) and (3.38) at the
point u = 0. The simple calculation gives the energy and the momentum of n-particle state
|v1, . . . , vn | F 〉 as follows:

E0({vj }) = −
n∑

j=1

{
1

v2
j + 1/4

− 1

(vj − θ)2 + 1/4

}

iP({vj }) =
n∑
j

{
log

vj + 1/2

vj − 1/2
+ log

vj − θ + 1/2

vj − θ − 1/2

} (3.39)

where we have redefined the spectral parameters as vj → vj − 1/2.
The solution of the BEs (3.35) and (3.36) is usually obtained in the thermodynamic limit

(N, n,m → ∞, with the fixed ratio n
N
, m
N
). In this case instead of a discrete set of spectral

parameters vj one introduces the distribution of continuous density ρ(v) of rapidities. The
ground state is defined by filling up the Dirac sea(s) of negative energies by the electrons. It
was argued in [28] that the ground state of the t–J model is defined by the string solutions
of length two, which are filling of all states with negative energy. In this case from the two
BEs (3.35) and (3.36) one can obtain one equation for the real part of rapidities of the strings
of length two. The lowest energy value can be reached by maximal filling of negative energy
states, which corresponds to n

N
= 1 and with zero magnetization, corresponding to m = n

2 .
In our model we have the same second set of BEs (3.36) as for ordinary t–J model, but the

first set is slightly different due to shift of the spectral parameters. Therefore, the string states
of length two have similar equation for the real part of rapidity. It is very natural to suppose
that the strings of length two contribute to the ground state of this model too4 but, contrary to
the ordinary t–J case, as is clear from the expression of the energy (3.39), only the states with
real part of the spectral parameters from the interval

−∞ < u <
θ

2
(3.40)

have to be filled in order to form a ground state. Since this is exactly equal to one-half of lattice
sites N , we have a ground state corresponding to quarter filling of all states.

The thermodynamic Bethe ansatz (TBA) technique (see e.g. [3]) can now be used in order
to analyse the BE for the real part of the rapidities. After taking the logarithm from the left-
and right-hand sides we introduce the notation ρ(v) for the density of states around v in the
thermodynamic limit and obtain the integral equation for it. To investigate the low-energy
excitations around the ground state we should consider in this equation rapidities only from
the region −∞ < v < θ/2. As a result we obtain

πρ(v) +
∫ ∞

Q

du
ρ(u)

(v − u)2 + 1
= 1

2

{
1

v2 + 1/4
+

1

(v − θ)2 + 1/4

}
(3.41)

where Q defines the spectral parameter of the Fermi level and is equal to θ/2 for the ground
state. As has been shown, it corresponds to quarter filling of the states.

We see that instead of the usual Fredholm equations, we obtain a Wiener-Hopf-type
equation. This is the essential reason why the physics of our model differs from the one with
usual half-filled ground state (for which Q = −∞).

4 Of course, in order to find a correct ground state one should analyse a full set of thermodynamic Bethe ansatz
equations with strings of arbitrary length, but because these equations are even with respect to spectral parameter one
can easily see that this hypothesis is reasonable.
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The energy of ground state is defined by

E0 = −2N
∫ ∞

Q

{
1

v2 + 1
− 1

(v − θ)2 + 1

}
= −2N(ρ(0) − ρ(θ)). (3.42)

It follows from (3.42), that at usual half filling Q = −∞, the energy is E = 0 and therefore
that state cannot be a ground state.

It seems to us that this model provides an interesting possibility to analyse by means of
exact integrability the physics of systems with quarter-filled ground state.
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